Course Content & Tentative Schedule

[R] Antiderivatives Reimann Sums The Fundamental Theorem of Calculus	 Area under a simple curve using Reimann Sum. Definite integral as the limit of a Riemann Sum. Proof of the Fundamental Theorem of Calculus. Substitution Rule Average value of a function Mean Value Theorem for integrals 	Chapter 5: 3 WEEKS [R] §4.7: Antiderivatives (p. 252) 1 -9, 12 -36, 39 -47, 50 [R] Chapter 4 Review (p.254) 51-58 §5.1: Areas and Distances (p. 266) 1, 3, 5, 13 -17 §5.2: The Definite Integral (p. 279) 1, 3, 5, 11 -26, 29 -42, 48, 49, 51, 53 §5.3: Evaluating Definite Integrals (p. 289) 1-18, 21-32, 37-40, 44-50, 69 §5.4: The Fundamental Theorem of Calculus (p. 298) 1-20, 23* -25*, 27*, 31* [R] §5.5: The Substitution Rule (p. 306) 1 -20, 22 -36 §5.5: The Substitution Rule (p. 307) 37 -56, 65* -69*
Techniques of Integration	 Integration by parts Trigonometric integrals using identities 	Chapter 5 Review (p. 309) 7 -29, 31, 32, 35 -39, 42, 46, 50* Chapter 5: 4 WEEKS §6.1: Integration by Parts (p. 316) 1 -20, 22 -33, 44* -46* §6.2: Trigonometric Integrals and Substitutions (p. 326) 1-64
[O] Numerical Integration	 Trigonometric substitutions Partial fractions [O] Approximate certain integrals using Simpson's Rule 	 §0.2: Ingolohiene integration (p. 334) 1 -42, 44*, 46* [O] §6.5: Approximate Integration (p. 350) 7-16 [R] §3.7:Indeterminate Forms and l'Hospital's Rule (p. 197) 1 - 38
[R] Indeterminate Forms and L'Hôpital's Rule	• [R] Evaluate limits of indeterminate forms using L'Hôpital's Rule	[R] Chapter 3 Review (p. 201) 61 – 64, 66 – 76 §6.6: Improper Integrals (p. 360) 1, 2, 5 – 32, 47, 48*, 49, 52, 61, 62
Improper Integrals	• Determine the convergence of improper integrals	Chapter 6 True-False Quiz* (p. 362) $ 1 - 7, 9 - 14$ Chapter 6 Review (p. 363) $ 1 - 50$ (IO): 57 58)
Applications of Integration	 Extend the notion of the definite integral to calculate: The area bounded between two curves The volume of a solid of revolution: disk, washer, shell methods Arc length 	Chapter 7: 2 and 1/2 WEEKS §7.1: Areas between Curves (p. 369) 1 –21, 33*, 35* –41* §7.2: Volumes (p. 378) 1 –18, 27, 28, 31 §7.3: Volumes by Cylindrical Shells (p. 384) 1 –20, 21 –26 (part (a) only), 33 –39, 41 §7.4: Arc Length (p. 391) 1, 2, 7 –13, 15 –18
		§7.6: Applications to Physics and Engineering (p. 408)Chapter 7 Review (p. 422) 1 – 14, 25, 26
Infinite Sequences	Convergence or divergence of infinite sequences	Chapter 8: 3 and 1/2 WEEKS §8.1: Sequences (p. 434) 1 – 32, 37 – 40, 52*
Infinite Series	 Sum of an infinite series from the definition. Geometric and telescoping series; applications Tests for convergence of series: Integral test, Comparison test, Limit comparison test, Ratio test, Root test, Alternating series test 	 §8.2: Series (p. 443) 1 - 28, 31 - 40, 45*, 49* §8.3: The Integral and Comparison Tests (p. 452) 3, 4, 6 - 30, 31* §8.4: Other Convergence Tests (p. 463) 3 - 8, 18*, 19 - 40, 43, 44*, 46a* §8.5: Power Series (p. 468) 3 - 25 §8.7: Taylor and Maclaurin Series (p. 487) 1 - 8, 11 - 18
Taylor and Maclaurin Series	 Absolute and conditional convergence Interval of convergence of a power series Finding Maclaurin and Taylor series using definitions 	Chapter 8 True-False Quiz* (p. 497) $1 - 18$, 20, 21 Chapter 8 Review (p. 498) $1 - 29$, $36 - 40$, $43 - 50$

* = enriched or theoretical questions; **[R]** = review topic; **[O]** = optional topic

Last updated: June 3, 2021